

Brushless Servomotors

Catalogue 01/14

Every care has been taken to ensure the accuracy of the contents contained in this catalogue, anyway such information are given as indication only and no liability can be taken for any error or omission. LINEARMECH reserves the right to modify the contents at his own discretion at any time and without notice.

© Copyright LINEARMECH 2014

1.	Brus	shless Servomotors BM Series	
	1.1	General data	page 2
	1.2	Construction technology	page 3
	1.3	Sizes overview	page 4
	1.4	Technical data	page 6
	1.5	Dimensions and performances	page 10
	1.5	.1 BM 45 L	page 10
	1.5	.2 BM 63 S	page 12
	1.5	.3 BM 63 L	page 14
	1.5	.4 BM 82 S	page 16
	1.5	.5 BM 82 L	page 17
	1.5	.6 BM 102 S	page 18
	1.5	.7 BM 102 L6	page 19
	1.5	.8 BM 102 L8	page 20
	1.5	.9 BM 45 L IEC	page 21
	1.5	.10 BM 63 S IEC	page 22
	1.5	.11 BM 63 L IEC	page 23
	1.5	.12 BM 82 S IEC	page 24
	1.5	.13 BM 82 L IEC	page 24
	1.5	.14 BM 102 S IEC	page 25
	1.5	.15 BM 102 L6 IEC - BM 102 L8 IEC	page 25
	1.6	Motor feedback	page 26
	1.7	Thermal protectors	page 27
	1.8	Motor connections	page 28
	1.8	.1 BM 45 / 63 CN - M17 connectors	page 28
	1.8	.2 BM 45 / 63 CV - Cables, no connectors	page 29
	1.8	.3 BM 82 / 102 CN - M23 connectors	page 30
2.	Driv	es	
	2.1	General features	page 31
	2.2	SAP (Stand Alone Positioning)	page 32
	2.3	MSQ (Motion Sequencer)	page 33
	2.4	Electrical Axis	page 34
	2.5	Field Networks	page 34
	2.6	Models and functions	page 35
	2.7	Available trasducers	page 35
	2.8	Recommended Servomotors - Drives matching	page 36
	2.9	Dimensions	page 38
3.	Con	necting cables	
	3.1	Power supply cable	page 39
	3.2	Signal cable	page 39
4.	Orde	ering code	
	4.1	Servomotor ordering code	page 40
	4.2	Drive ordering code	page 41
	4.3	Connecting cables ordering code	page 42
	4.3	.1 Signal cables	page 42
	4.3	.2 Power supply cables	page 42
App	bendi	x	
••	А.	Terms and Definitions	page 43
	В.	Test conditions	page 44

Linear-Mech. 1. Brushless Servomotors BM Series

LINEARMECH Brushless Servomotors BM Series are produced according to the latest state-of-the-art technology to improve the specific torque and its linear erogation.

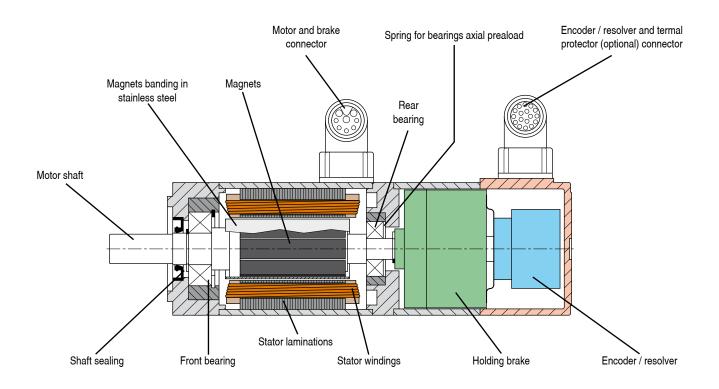
The high efficiency servomotors BM Series by Linearmech are made using "**Segmented Lamination Stator Technology**". This technology can pack higher torque and power density into the same-sized motor. It also allows the highest slot fill of the stator winding and the motor to run cooler, potentially extending its operational life.

Brushless servomotors BM Series have been designed for continuous working with natural convection cooling, without external cooling devices. The heat is mainly generated in the stator winding and it is dissipated through the motor external body thanks to the excellent mechanical and thermal coupling between these two parts.

1.1 General data

Motor type:	brushless with sinusoidal back-EMF (synchronous, permanent magnets)
Cooling:	natural convection
Mounting:	IM B5
Magnets material:	NeFeB
Insulation class:	F (overheating on windings 100 K with ambient temperature 40°C and safety margin 15°C)
Protection:	motore body IP 54 motore shaft IP 44 standard, IP 54 with lubricant seal
Operating temperature:	(0 + 40)°C
Ambient storage temperature:	(- 10 + 60)°C
Humidity:	max. 85 % without condensation
Operating altitude:	< 1000 m ASL (for higher altitude a degrading factor must be applied)
Thermal protection:	optional: PTC, PTO or KTY
Motor feedback:	optical encoder, LINE-DRIVER, 2000 ppr (standard) resolver, 1 pole pairs 7 V rms, 10 kHz (optional) BISS absolute multiturn encoder (optional)
Holding brake:	optional, 24 V dc power supply
Balance quality grade:	G 2.5 (standard) according to IEC 1940-1
Reference standards:	IEC 60034-1, IEC 60034-5, IEC 60034-6, IEC 60034-7, IEC 60034-11, ISO 1940-1
Marked:	CE

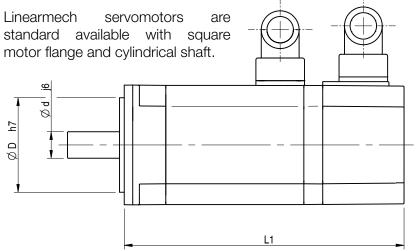
1.2 Construction technology

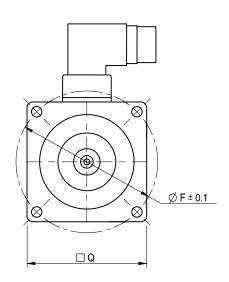

The STATOR of Linearmech brushless servomotors is made according to the **"Segmented Lamination Stator Technology"** to optimize the use of copper. In details, the advantages and benefits of this construction technology are:

- **Greater fill factor**: by winding every tooth individually, segmented lamination stator technology allow higher slot fill compared to more traditional brushless dc motor stators of equal size. With traditional windings, the slot fill is about 30% of the total space. Using the segmented lamination stator technology it's possible to reach 40% and more.
- **Reduced length of end windings**: the end windings do not provide additional power or torque. They only connect "active" electrical conductors from one slot to another. By carrying current, the end windings are naturally affected by losses of electrical power. By reducing their length, the motor efficiency increases.

The segmented lamination stator technology lead to a considerable increase of performances in servomotors, both in torque and efficiency, than motors produced with traditional technology.

Peculiar magnets geometry together with a specific magnets protection create a robust ROTOR structure, minimizing the cogging effect.


- **Magnets geometry**: through FEM software we defined the optimal magnets shape to minimize the cogging effect and the harmonic distortion of the BEMF generated by the motor. The result is a motor with very low cogging torque and a very low torque ripple.
- Stainless steel magnets protection: permanent magnets used in brushless servomotors are rare-earth magnets (NdFeB) with great magnetic properties in terms of "energy density". Unfortunately they can be subject to corrosive attack if exposed to particularly aggressive environments, as they are obtained by sintering process. Magnets are also fixed on the motor shaft and they are subject to centrifugal forces and mutual attraction forces while rotating. To ensure the mechanical fixing of magnets and their insulation from the outside, a retaing system based on stainless steel bushes placed in each rotor of the BM series is applied.



1. Brushless Servomotors BM Series Linear-Mech

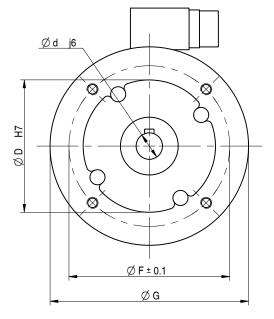
1.3 **Sizes overview**

SQUARE Flange

Servomotor	Continuous rated torque [Nm]	Stall torque [Nm]	Peak torque [Nm]	Ø d [mm]	Ø D [mm]	Ø F [mm]	□ Q [mm]	L1 [mm]
BM 45 L	0.32	0.35	1.05	9	40	50	45	122
BM 63 S	0.6	0.7	2.1	14	50	75	63	123
BM 63 L	1.3	1.35	4.2	14	50	75	63	148
BM 82 S	1.3	1.5	4.5	19	70	100	82	134
BM 82 L	2.5	2.9	9	19	70	100	82	159
BM 102 S	4.1	5.2	15	24	90	115	102	176
BM 102 L6	6.4	7.3	22	24	90	115	102	226
BM 102 L8	6.7	9	30	24	90	115	102	226

NOTE: for overall dimensions see Section 1.5 "Dimensions and performances".

BM 45 L


BM 63 L

BM 82 S

IEC Flange

Linearmech servomotors are also available with metric flange dimensions according to IEC 34-7, UNEL 05513 regulations (IEC B14 motor flange and input shaft with key).

Linear-Med

Servomotor	IEC Flange	Ø d [mm]	Ø D [mm]	Ø F [mm]	Ø G [mm]
BM 45 L IEC	56 B14	9	50	65	80
BM 63 S IEC	63 B14	11	60	75	90
BM 63 L IEC	71 B14	14	70	85	105
BM 82 S IEC	80 B14	19	80	100	120
BM 82 L IEC	80 B14	19	80	100	120
BM 102 S IEC	90 B14	24	95	115	140
BM 102 L6 IEC	90 B14	24	95	115	140
BM 102 L8 IEC	90 B14	24	95	115	140

NOTE: for overall dimensions see Section 1.5 "Dimensions and performances".

(Linear-Mech.) 1. Brushless Servomotors BM Series

1.4 Technical Data

Servomotor size				BM 45 L - 30	
Drive rated voltage	U _{nom}	[M]	24 V dc	48 V dc	230 V dc
Stall torque	Т _{о, 100к}	[Nm]		0.35	
Continuous rated torque	T _{nom, 100K}	[Nm]		0.32	
Peak torque	Tp	[Nm]		1.05	
Rated speed	n _{nom}	[rpm]		3000	
Max. speed	n _{max}	[rpm]		4000	
Number of poles				8	
Stall current	I _{0, 100К}	[A]	7.4 (¹)	3.8 (¹)	1.25
Peak current	l _p	[A]	24.4 (1)	12.5 (¹)	3.95
Voltage constant	k _e	[V/1000 rpm]	5 (1)	8.9 (¹)	17.2
Torque constant	k _T	[Nm/A]	0.047 (1)	0.09 (1)	0.28
Thermal time constant	t _{th}	[min]		12	
Winding resistance	R _{ph}	[Ω]	0.38	1.4	9.7
Winding inductance	L _D	[mH]	0.69	2.4	16.7
Electric time constant	t _{el}	[ms]	1.8	1.7	1.7
Moment of inertia (without brake)	J _{motore}	[kg × m ²]		0.091 × 10 ⁻⁴	
Moment of inertia (with brake)	J _{motore BR}	[kg × m ²]		0.092 × 10 ⁻⁴	
Rated braking torque	T _{BR}	[Nm]		0.8	
Brake supply voltage	U _{BR}	[V]		$24 \text{ V dc} + \frac{5\%}{10\%}$	
Brake power	P _{BR}	[W]		12.8	
Brake engagement delay time	t _{BR}	[ms]		40	
Brake disengagement delay time	t _{-BR}	[ms]		7	
Permissible radial load on motor shaft	F _R	[N]		150	
Permissible axial load on motor shaft	F _N	[N]		50	
Mass without brake / mass with brake	m	[kg]		0.9 / 1.2	

(1) - DC values refer to trapezoidal commutation

NOTE: Available, upon request, special windings for higher nominal rated speed up to 6000 rpm. Contact our Technical Dpt. for more information.

1.4 Technical data

Servomotor size			30	/I 63 L -	BI	BM 63 S - 30			
Drive rated voltage	U _{nom}	[V]	230 V ac	48 V dc	24 V dc (²)	230 V ac	48 V dc	24 V dc	
Stall torque	Т _{о, 100К}	[Nm]		1.35			0.7		
Continuous rated torque	T _{nom, 100K}	[Nm]		1.3			0.6		
Peak torque	Τ _ρ	[Nm]		4.2			2.1		
Rated speed	n _{nom}	[rpm]		3000			3000		
Max. speed	n _{max}	[rpm]		4000			4000		
Number of poles				8			8		
Stall current	I _{0, 100К}	[A]	2.1	15.7 (¹)	35 (¹)	0.98	7.7 (¹)	15.9 (¹)	
Peak current	l _p	[A]	7.1	53 (¹)	115 (1)	3.7	25.8 (1)	50.8 (1)	
Voltage constant	k _e	[V/1000 rpm]	43	9.4 (¹)	4.3 (¹)	41	9.7 (¹)	4.7 (¹)	
Torque constant	k _T	[Nm/A]	0.71	0.089 (1)	0.04 (1)	0.67	0.09 (1)	0.044 (1)	
Thermal time constant	t _{th}	[min]		15			15	1	
Winding resistance	R _{ph}	[Ω]	7.1	0.2	0.09	17.4	0.5	0.13	
Winding inductance	L _D	[mH]	30	0.8	0.17	53	1.5	0.39	
Electric time constant	t _{el}	[ms]	4.2	4.2	1.9	3	3	3	
Moment of inertia (without brake)	J _{motore}	$[kg \times m^2]$		0.272 × 10 ⁻⁴			0.156 × 10 ⁻⁴		
Moment of inertia (with brake)	J _{motore BR}	[kg × m ²]		0.290 × 10 ⁻⁴			0.174 × 10 ⁻⁴	(
Rated braking torque	T _{BR}	[Nm]		2.5			2.5		
Brake supply voltage	U _{BR}	[V]	5 % 10 %	24 V dc ⁺		5 % 0 %	24 V dc ⁺		
Brake power	P _{BR}	[VV]		13.3			13.3		
Brake engagement delay time	t _{BR}	[ms]		40			40		
Brake disengagement delay time	t_BR	[ms]	7		7				
Permissible radial load on motor shaft	F _R	[N]		230			230		
Permissible axial load on motor shaft	F _N	[N]		70			70		
Mass without brake / mass with brake	m	[kg]		1.85 / 2.50			1.25 / 1.90		

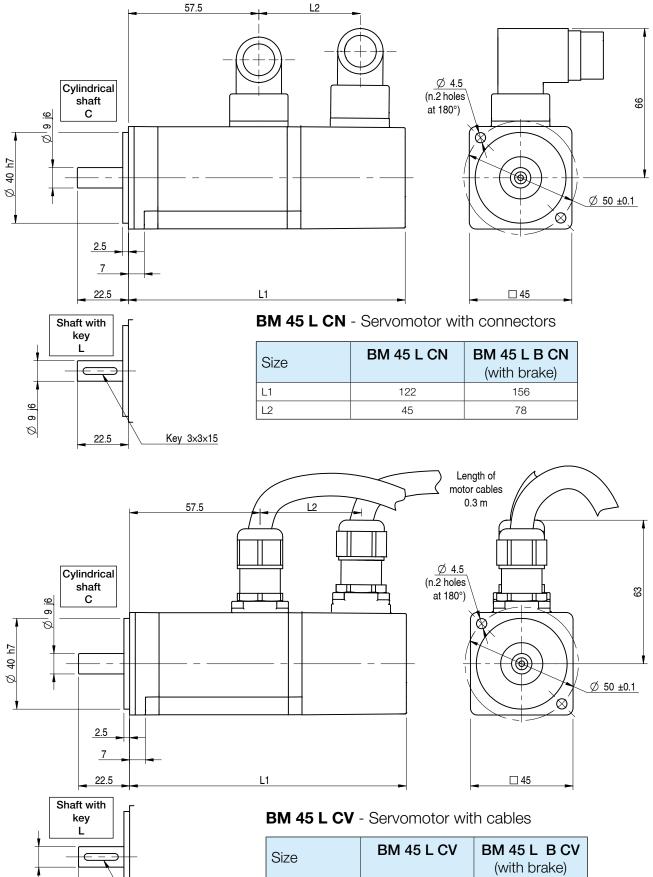
(1) - DC values refer to trapezoidal commutation

(2) - only intermittent service S3 25 % over 10 min

Linear-Mech. 1. Brushless Servomotors BM Series

1.4 Technical Data

Servomotor size	BM 82 S - 30		BM 82 L - 30			
Drive rated voltage	U _{nom}	[V]	230 V ac	400 V ac	230 V ac	400 V ac
Stall torque	Т _{о, 100к}	[Nm]	1	.5	2	.9
Continuous rated torque	T _{nom, 100K}	[Nm]	1	.3	2	.5
Peak torque	Tp	[Nm]	4	.5	9	.0
Rated speed	n _{nom}	[rpm]	30	000	30	00
Max. speed	n _{max}	[rpm]	40	000	40	00
Number of poles				8	8	3
Stall current	I _{о, 100К}	[A]	2.6	1.2	4.6	2.3
Peak current	l _p	[A]	7.2	3.7	14.7	7.4
Voltage constant	k _e	[V/1000 rpm]	39.0	76.5	39.5	78.0
Torque constant	k _T	[Nm/A]	0.64	1.26	0.64	1.28
Thermal time constant	t _{th}	[min]	16		16	
Winding resistance	R _{ph}	[Ω]	3.9	14.8	1.5	6.2
Winding inductance	L _D	[mH]	28	105	13.8	56
Electric time constant	t _{el}	[ms]	7.1	7.1	8.9	9
Moment of inertia (without brake)	J _{motore}	$[kg \times m^2]$	0.638	× 10 ⁻⁴	1.030	× 10 ⁻⁴
Moment of inertia (with brake)	J _{motore BR}	$[kg \times m^2]$	0.768	× 10 ⁻⁴	1.160	× 10 ⁻⁴
Rated braking torque	T _{BR}	[Nm]	6	5.5	6	
Brake supply voltage	U _{BR}	[V]	24 '	V dc ^{+ 5 %} - 10 %	24 \	/ dc ^{+ 5 %} - 10 %
Brake power	P _{BR}	[W]	23	3.8	23	3.8
Brake engagement delay time	t _{BR}	[ms]	4	15	4	5
Brake disengagement delay time	t _{-BR}	[ms]	1	0	1	0
Permissible radial load on motor shaft	F _R	[N]	400		4(00
Permissible axial load on motor shaft	F _N	[N]	1:	30	1:	30
Mass without brake / mass with brake	m	[kg]	2.0	(3.7)	3.3	/ 5.0


1.4 Technical Data

Servomotor size			L8 - 30	BM 102	L6 - 30	BM 102	BM 102 S - 30		
	U _{nom}	[V]	400 V ac	230 V ac	400 V ac	230 V ac	400 V ac	230 V ac	
	Т _{о, 100к}	[Nm]	.0			7.		5	
	T _{nom, 100K}	[Nm]		6		6.		4	
T _p Peak torque	T _p	[Nm]).0	30	2.0	22	5.0	15	
n _{nom} Rated speed	n _{nom}	[rpm]	00	30	00	30	00	30	
n _{max} Max. speed	n _{max}	[rpm]	00	40	00	40	00	40	
Number of poles			3	8	3	6	3	8	
D, 100K Stall current	I _{0, 100К}	[A]	5.8	11.5	6.1	9.8	3.5	6.5	
I _p Peak current	l _p	[A]	25.5	47.0	22.0	35.5	14.0	26.0	
k _e Voltage constant	k _e	[V/1000 rpm]	94.0	47.7	77.0	47.7	90.0	48.6	
k _T Torque constant	k _T	[Nm/A]	1.55	0.8	1.2	0.8	1.48	0.8	
t _{th} Thermal time constant	t _{th}	[min]	5	4	5	4	5	3	
R _{ph} Winding resistance	R _{ph}	[Ω]	1.6	0.4	1.6	0.56	3.5	0.9	
L _D Winding inductance	L _D	[mH]	27.6	6.0	23.0	8.2	54.0	14.0	
t _{el} Electric time constant	t _{el}	[ms]	17.2	15.0	14.3	14.6	15.4	15.5	
motore Moment of inertia (without brake)	J _{motore}	$[kg \times m^2]$	× 10 ⁻⁴	4.950	× 10 ⁻⁴	4.950	× 10 ⁻⁴	2.88	
tore BR Moment of inertia (with brake)	$J_{motore\;BR}$	$[kg \times m^2]$	× 10 ⁻⁴	5.410	× 10 ⁻⁴	5.410	× 10 ⁻⁴	3.34	
T _{BR} Rated braking torque	T _{BR}	[Nm]	4	1		1	4	1	
U _{BR} Brake supply voltage	U _{BR}	[V]	/ dc + 5 % - 10 %	24 \	/ dc ^{+ 5 %} _{- 10 %}	24 \	/ dc ^{+ 5 %} - 10 %	24 \	
P _{BR} Brake power	P _{BR}	[VV]	5.2	35	5.2	35	5.2	35	
t _{BR} Brake engagement delay time	t _{BR}	[ms]	0	5	0	5	0	5	
t _{-BR} Brake disengagement delay time	t _{-BR}	[ms]	5	1	5	1	5	1	
F _R Permissible radial load on motor shaft	F _R	[N]	500		00	50	00	500	
$F_{_N}$ Permissible axial load on motor shaft	F _N	[N]	50	15	50	15	50	15	
m Mass without brake / mass with brake		[kg]	10.0	7.8 /	10.0	7.8 /	/ 7.4	5.2	

[Linear-Mech.] 1. Brushless Servomotors BM Series

1.5 Dimensions and performances - SQUARE Flange Series

1.5.1 BM 45 L

L1

L2

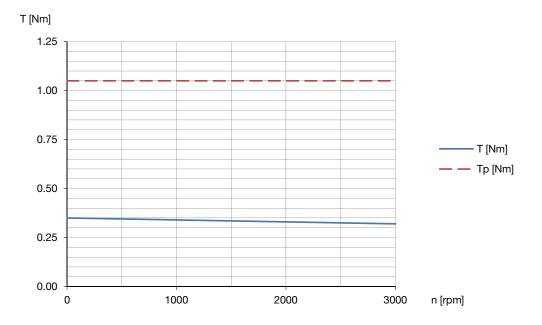
key 3x3x15

_0		(with brake)
	122	156
	45	78

9 j6

0

22.5

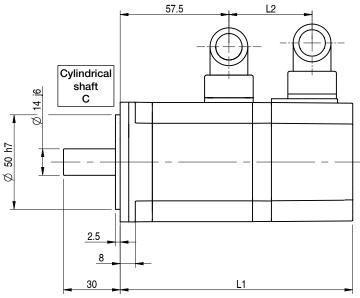

1.5.1 BM 45 L

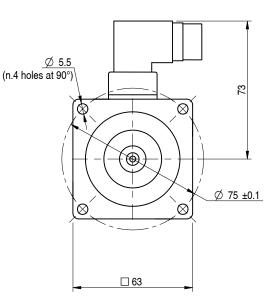
Following diagram shows operating curve of servomotor, where:

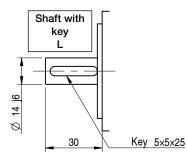
- T_{nom} [Nm] = continuous rated torque
- T_p [Nm] = peak torque

More information about the definitions above are available at Appendix A "Terms and Definitions", page 43.

More information about the test conditions to define the operating curve of servomotor are available at Appendix B "Test conditions", page 44.

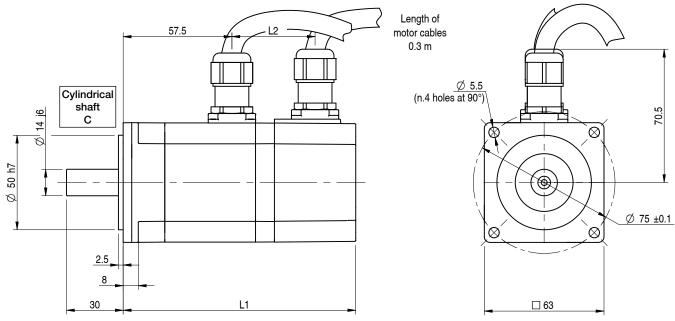


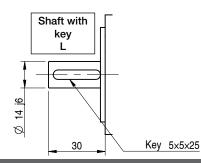

Linear-Mel


Linear-Mech. 1. Brushless Servomotors BM Series

1.5 Dimensions and performances - SQUARE Flange Series

1.5.2 BM 63 S



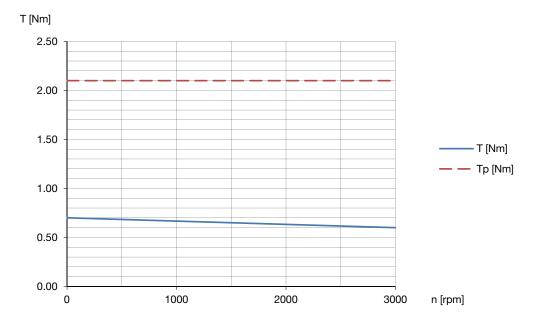


BM 63 S CN - Servomotor with connectors

Size	BM 63 S CN	BM 63 S B CN (with brake)
L1	123	164
L2	44	85

BM 63 S CV - Servomotor with cables

Size	BM 63 S CV	BM 63 S B CV (with brake)
L1	123	164
L2	44	85

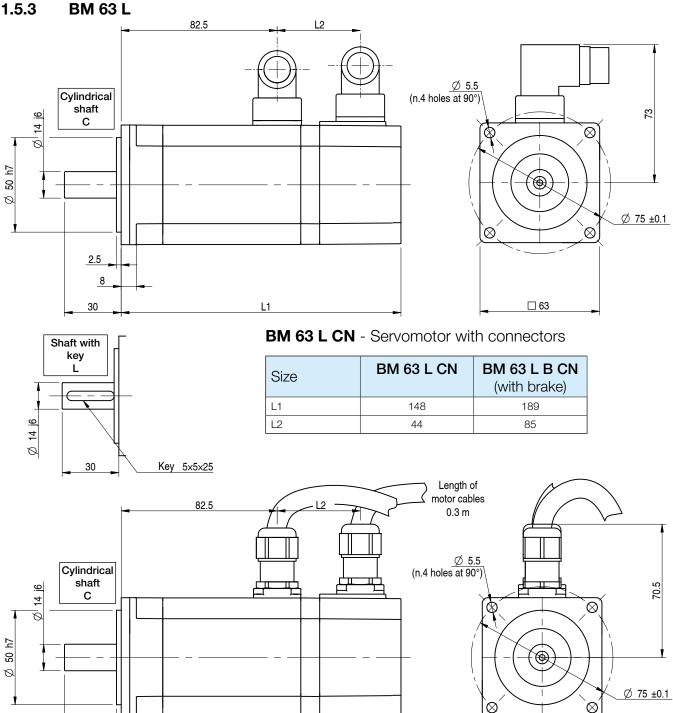

1.5.2 BM 63 S

Following diagram shows operating curve of servomotor, where:

- T_{nom} [Nm] = continuous rated torque
- T_p [Nm] = peak torque

More information about the definitions above are available at Appendix A "Terms and Definitions", page 43.

More information about the test conditions to define the operating curve of servomotor are available at Appendix B "Test conditions", page 44.



(Linear-Me

1. Brushless Servomotors BM Series Linear-Mech.

Dimensions and performances - SQUARE Flange Series 1.5

1.5.3

BM 63 L CV - Servomotor with cables

L1

Key 5x5x25

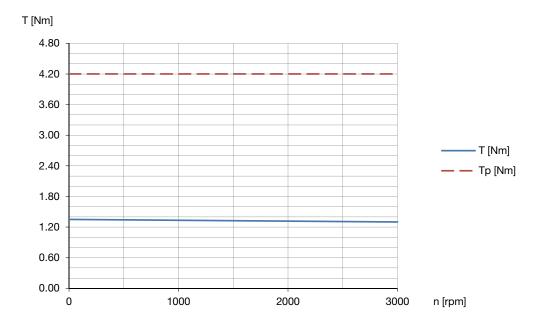
Size	BM 63 L CV	BM 63 L B CV (with brake)
L1	148	189
L2	44	85

□ 63

14 j6 0 2.5 8 30

Shaft with key L

30

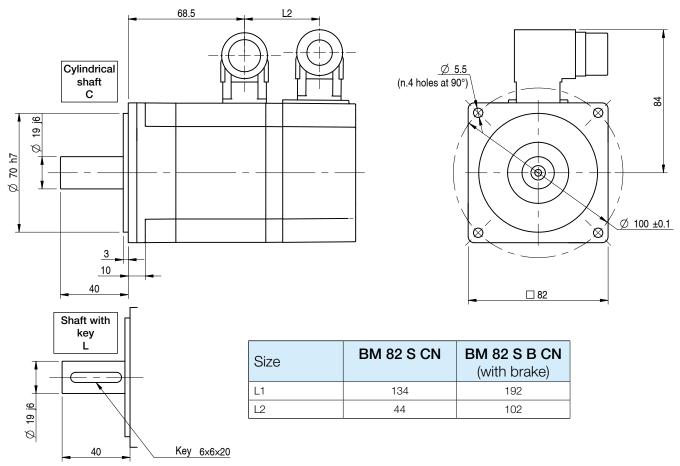

1.5.3 BM 63 L

Following diagram shows operating curve of servomotor, where:

- T_{nom} [Nm] = continuous rated torque
- T_p [Nm] = peak torque

More information about the definitions above are available at Appendix A "Terms and Definitions", page 43.

More information about the test conditions to define the operating curve of servomotor are available at Appendix B "Test conditions", page 44.

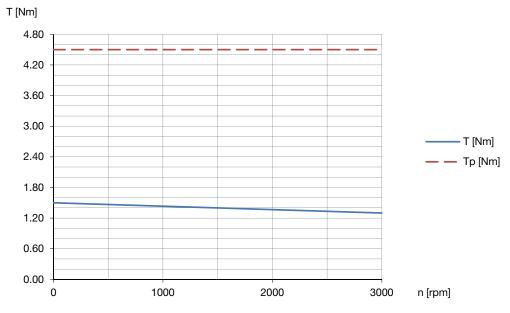


Linear-Mel

[[Linear-Mech.] 1. Brushless Servomotors BM Series

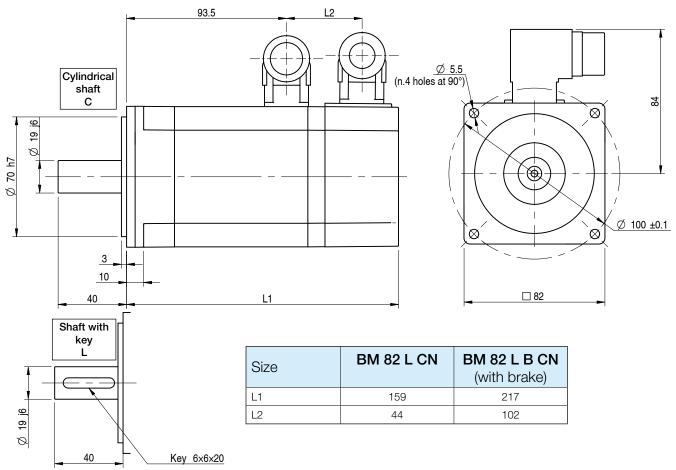
1.5 Dimensions and performances - SQUARE Flange Series

1.5.4 BM 82 S CN - Servomotor with connectors



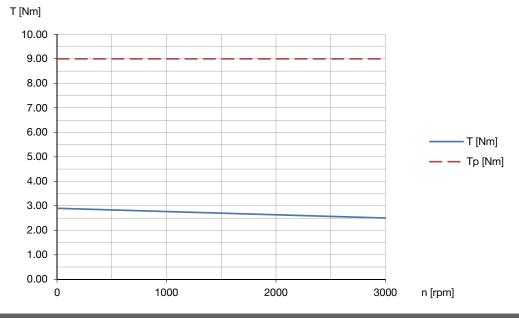
Following diagram shows operating curve of servomotor, where:

- T_{nom} [Nm] = continuous rated torque
- T_p [Nm] = peak torque


More information about the definitions above are available at Appendix A "Terms and Definitions", page 43.

More information about the test conditions to define the operating curve of servomotor are available at Appendix B "Test conditions", page 44.

1.5.5 BM 82 L CN - Servomotor with connectors

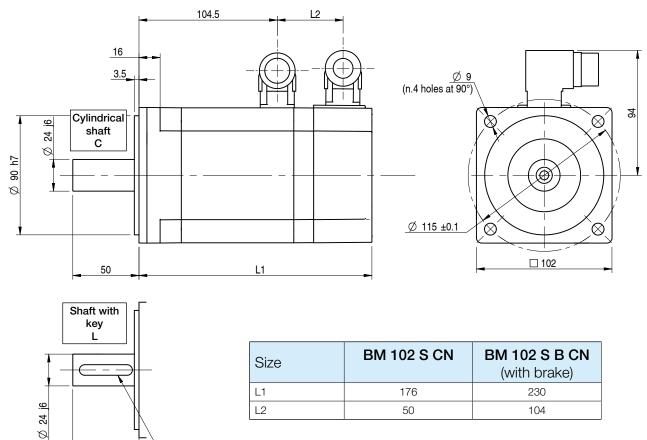


Following diagram shows operating curve of servomotor, where:

- T_{nom} [Nm] = continuous rated torque
- T_n [Nm] = peak torque

More information about the definitions above are available at Appendix A "Terms and Definitions", page 43.

More information about the test conditions to define the operating curve of servomotor are available at Appendix B "Test conditions", page 44.



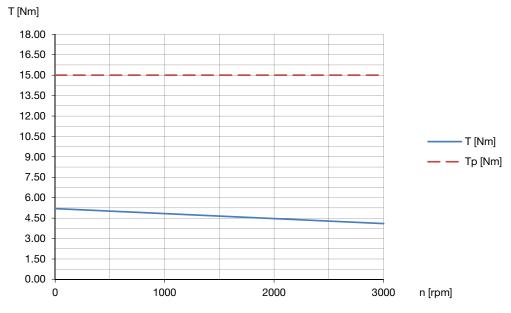
Linear-Me

[[Linear-Mech.] 1. Brushless Servomotors BM Series

1.5 Dimensions and performances - SQUARE Flange Series

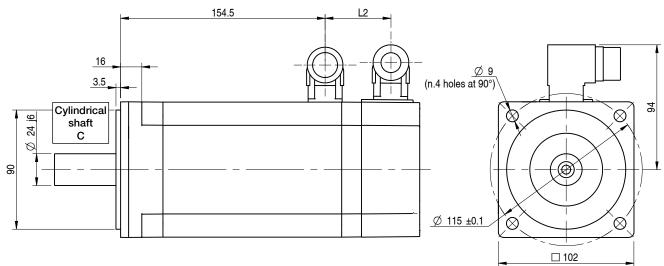
1.5.6 BM 102 S CN - Servomotor with connectors

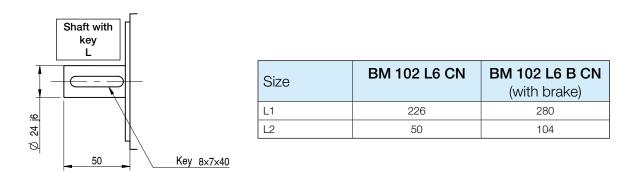
Following diagram shows operating curve of servomotor, where:


Key 8x7x40

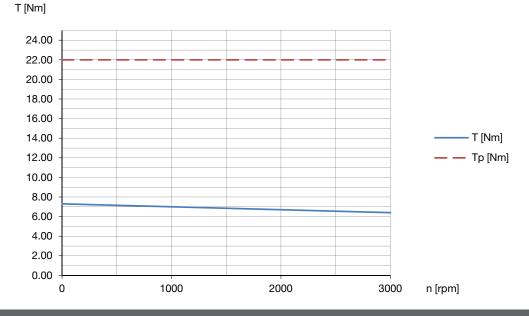
- T_{nom} [Nm] = continuous rated torque
- T_p [Nm] = peak torque

50


More information about the definitions above are available at Appendix A "Terms and Definitions", page 43.


More information about the test conditions to define the operating curve of servomotor are available at Appendix B "Test conditions", page 44.

1.5.7 BM 102 L6 CN - Servomotor with connectors

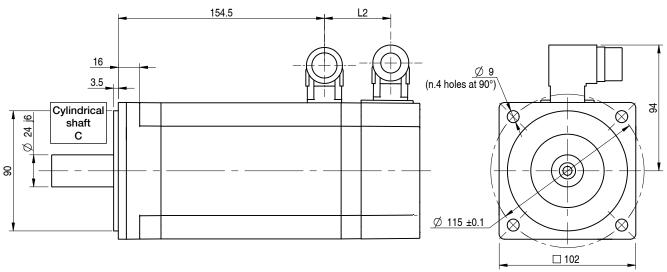


Following diagram shows operating curve of servomotor, where:

- T_{nom} [Nm] = continuous rated torque
- T_n [Nm] = peak torque

More information about the definitions above are available at Appendix A "Terms and Definitions", page 43.

More information about the test conditions to define the operating curve of servomotor are available at Appendix B "Test conditions", page 44.

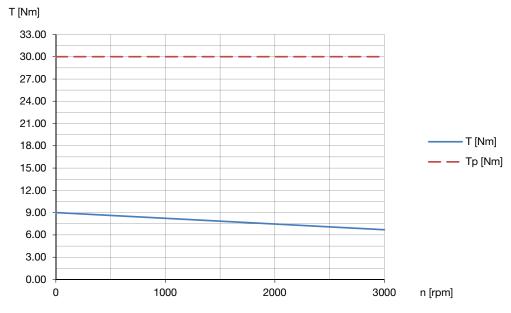



(Linear-Me

[[Linear-Mech.] 1. Brushless Servomotors BM Series

1.5 Dimensions and performances - SQUARE Flange Series

1.5.8 BM 102 L8 CN - Servomotor with connectors

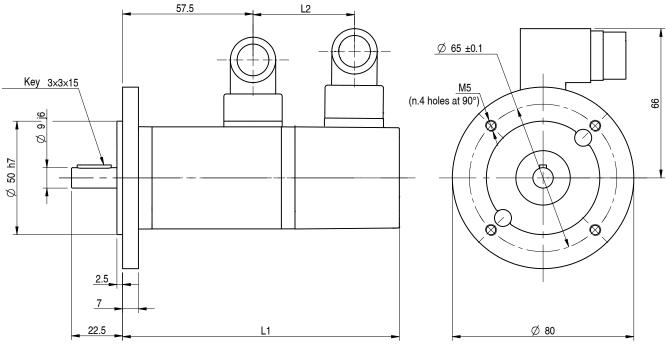


Following diagram shows operating curve of servomotor, where:

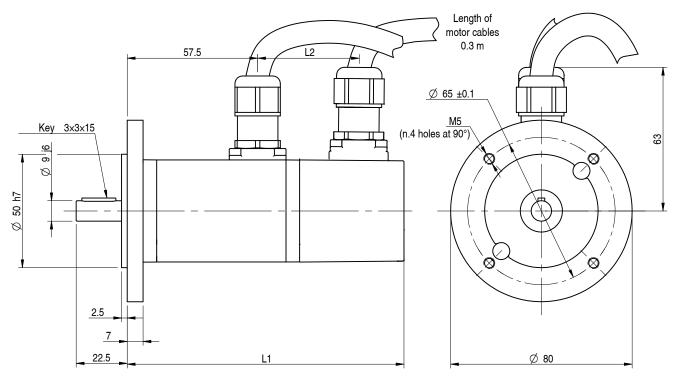
- T_{nom} [Nm] = continuous rated torque
- T_p [Nm] = peak torque

More information about the definitions above are available at Appendix A "Terms and Definitions", page 43.

More information about the test conditions to define the operating curve of servomotor are available at Appendix B "Test conditions", page 44.



1.5 Dimensions and performances - IEC Flange Series

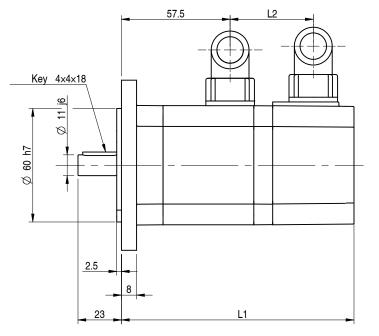

1.5.9 BM 45 L IEC

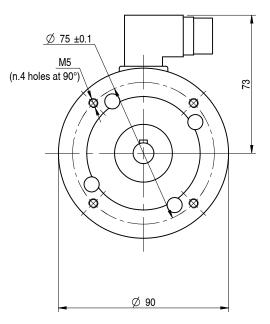
NOTE: operating curve of servomotor at Section 1.5.1 page 11

BM 45 L IEC CN - Servomotor with connectors

Size	BM 45 L IEC CN	BM 45 L IEC B CN (with brake)
L1	122	156
L2	45	78

BM 45 L IEC CV - Servomotor with cables

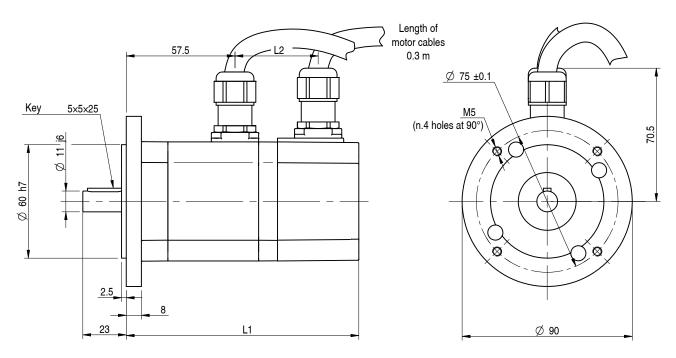

NOTE: operating curve of servomotor at Section 1.5.1 page 11


Size	BM 45 L IEC CV	BM 45 L IEC B CV (with brake)
L1	122	156
L2	45	78

Linear-Mech. 1. Brushless Servomotors BM Series

1.5 Dimensions and performances - IEC Flange Series

1.5.10 BM 63 S IEC



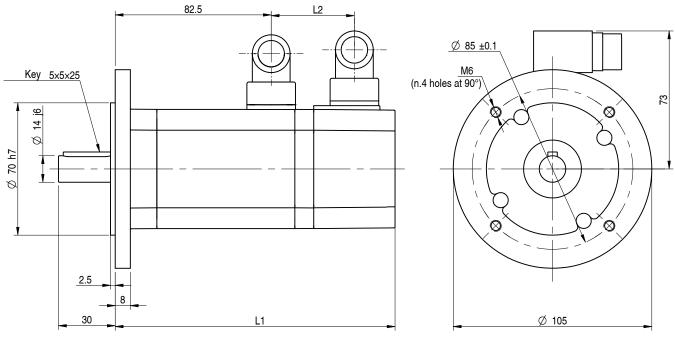
BM 63 S IEC CN - Servomotor with connectors

NOTE: operating curve of servomotor at Section 1.5.2 page 13

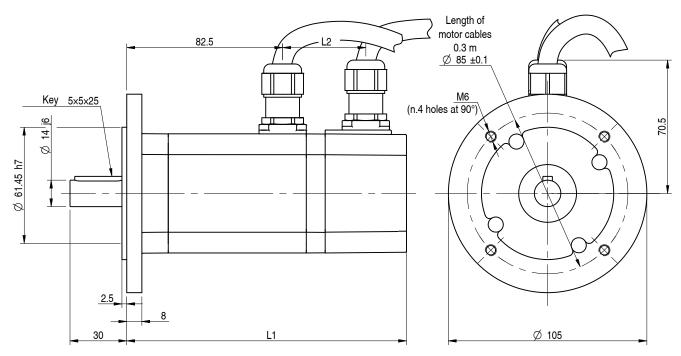
Size	BM 63 S IEC CN	BM 63 S IEC B CN (with brake)
L1	123	164
L2	44	85

BM 63 S IEC CV - Servomotor with cables

NOTE: operating curve of servomotor at Section 1.5.2 page 13


Size	BM 63 S IEC CV	BM 63 S IEC B CV (with brake)
L1	123	164
L2	44	85

1.5 Dimensions and performances - IEC Flange Series

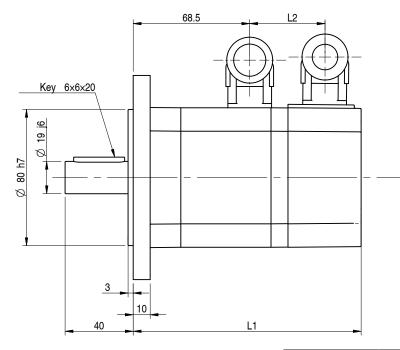

1.5.11 BM 63 L IEC

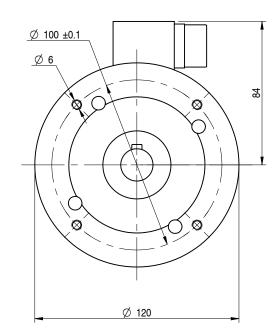
BM 63 L IEC CN - Servomotor with connectors

NOTE: operating curve of servomotor at Section 1.5.3 page 15

at	Size	BM 63 L IEC CN	BM 63 L IEC B CN (with brake)
	L1	148	189
	L2	44	85

BM 63 L IEC CV - Servomotor with cables

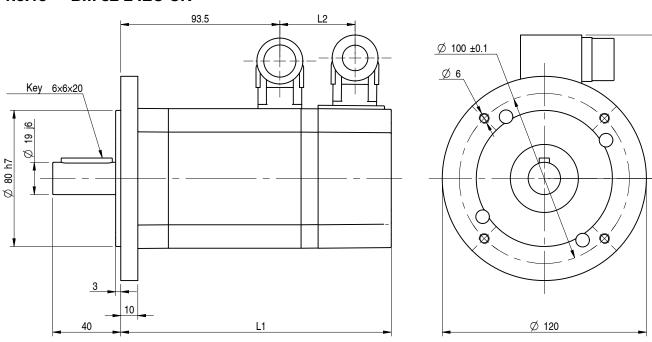

NOTE: operating curve of servomotor at
Section 1.5.3 page 15


Size	BM 63 L IEC CV	BM 63 L IEC B CV (with brake)
L1	148	189
L2	44	85

Linear-Mech. 1. Brushless Servomotors BM Series

1.5 Dimensions and performances - IEC Flange Series

1.5.12 BM 82 S IEC CN

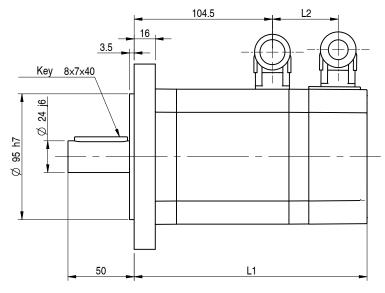


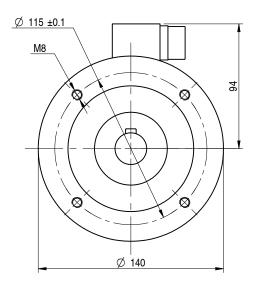
84

NOTE: operating curve of servomotor at Section 1.5.4 page 16

Size	BM 82 S IEC CN	BM 82 S IEC B CN (with brake)
L1	134	192
L2	44	102

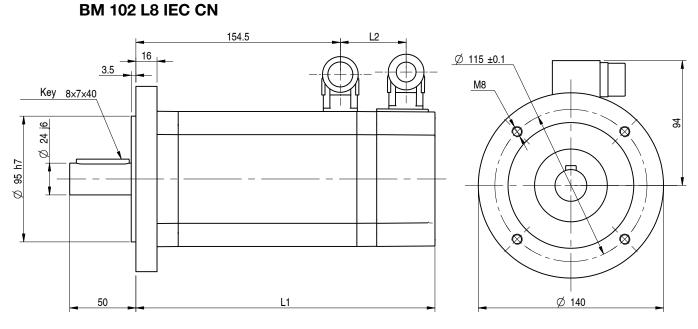
1.5.13 BM 82 L IEC CN


NOTE: operating curve of servomotor at Section 1.5.5 page 17


Size	BM 82 L IEC CN	BM 82 L IEC B CN (with brake)
L1	159	217
L2	44	102

1.5 Dimensions and performances - IEC Flange Series

1.5.14 BM 102 S IEC CN



NOTE: operating curve of servomotor at Section 1.5.6 page 18

Size	BM 102 S IEC CN	BM 102 S IEC B CN (with brake)
L1	176	230
L2	50	104

1.5.15 BM 102 L6 IEC CN

NOTE: operating curves of servomotors at Section 1.5.7 page 19 and 1.5.8 page 20

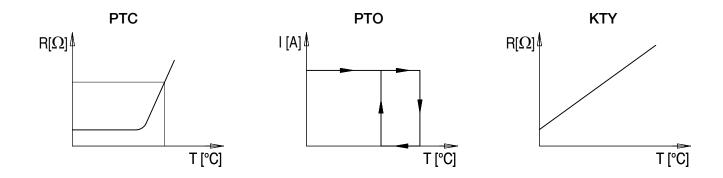
Size	BM 102 L6 IEC CN BM 102 L8 IEC CN	BM 102 L6 IEC B CN BM 102 L8 IEC B CN (with brake)
L1	226	280
L2	50	104

Motor feedback 1.6

E01: Optical incremental encoder		
Supply voltage	[V dc]	5V ± 5%
Max. supply current	[mA]	200
Standard resolution	[pulses / turn]	2000
Electronics type	[-]	Line Driver
Max. frequency	[kHz]	200
Incremental signals (Line Driver)	[-]	A,A/ - B,B/ - Z,Z/
Switching signals (Line Driver)	[-]	HU,HU/ - HV,HV/ - HW,HW/
Operating temperature	[°C]	-20 +85
Max. speed	[rpm]	6000

R	01: Resolver	
Supply voltage	[V rms]	7 @ 10KHz
Transformation ratio	[-]	0.5 ± 5%
Number of pole-pairs	[-]	1
Electrical error	[-]	± 10' max
Operating temperature	[°C]	-55 +155
Max. speed	[rpm]	10000

A01: BIS	A01: BISS absolute multiturn encoder			
Supply voltage	[V dc]	5V ^{+ 10 %} - 5 %		
Current consumption	[mA]	150		
Single turn resolution	[-]	12-19 bit		
Multiturn resolution	[-]	12 bit		
Serial interface	[-]	BISS		
Connection	[-]	Clock and Data RS422		
Incremental signals	[-]	Sin Cos 1Vpp		
Resolution	[pulses / turn]	2048		
Operating temperature	[°C]	-40 +120		
Max. speed	[rpm]	10000		

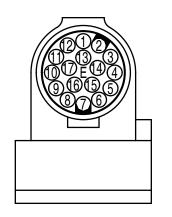

1.7 Thermal protectors

01:	Thermistore PTC				
Suitable for fast overloads, no temperature monitoring					
Signal type	[-]	Non linear resistance			
Rated voltage	[V dc]	7,5			
Max. voltage	[V dc]	30			
Insulation voltage	[kV]	2,5			
Switching temperature (standard)	[°C]	140			
Resistance @ 135°C	[Ω]	≤ 550			
Resistance @ 145°C	[Ω]	≥1330			
Resistance @ 155°C	[Ω]	≥4000			

	02: Bimetallic therm	al protectors PT	0		
Suitable for long time overloads, no temperature monitoring					
Signal type		[-]	NC - normally closed		
Switching temperature		[°C]	140		
Reactivation temperature		[°C]	110 ± 15		
Supply voltage		[V]	250		
Rated current		[A]	2,5		
Insulation current		[kV]	2		

	03: KTY84-130	
	Temperature monitoring	
Temperature monitoring		YES
Signal type	[-]	Linear resistance
Continuous current	[mA]	2
Operating temperature	[°C]	-40 +300
Resistance @100°C, 2mA	[Ω]	min 970 max 1030
Resistance rate R100°C/R25°C	[-]	min 0.595 max 0.611
Resistance rate R250°C/R100°C		min 2.111 max 2.221

NOTE: ECO Series drives supplied with Linearmech servomotors support 02 (PTO) protection only.

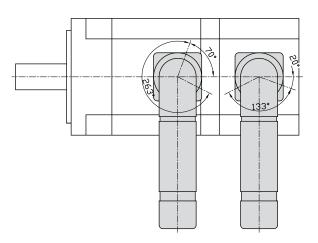

(Linear-Mech.) 1. Brushless Servomotors BM Series

1.8 **Motor connections**

1.8.1 BM 45 / 63 CN - M17 Connectors _____

POWER M17 7-POLE	
Pin	Function
1	Phase U
2	Phase V
3	-
	PE
4	Brake +
5	Brake -
6	Phase W

	SIGNA	L M17 17-POLE	
Pin	E01: Incremental encoder	R01: Resolver	A01: BISS absolute encoder
1	СНВ	Sin+	DATA
2	CHB/	Sin-	DATA/
3	Z	-	A+
4	HU	-	B+
5	HW	-	DC 5V
6	-	-	-
7	OV enc	R2	0V sensor
8	PT (optional)	PT (optional)	PT (optional)
9	PT (optional)	PT (optional)	PT (optional)
10	5 V enc	R1	5V sensor
11	CHA/	Cos-	CLOCK/
12	CHA	Cos+	CLOCK
13	Z/	-	A-
14	HU/	-	B-
15	HV/	-	-
16	HV	-	-
17	HW/	-	0V Un



Connectors orientation

Connectors may rotate to be properly oriented. The drawing shows the angular range of orientation.

POWER

SIGNAL

1.8 Motor connections

1.8.2 BM 45 / 63 CV - Cables, no connectors

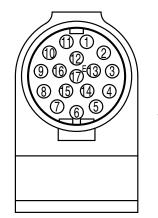
POW	ER			SIGNAL	
	Function	E01: Increme	ntal encoder	R01: Resolv	er
Wire color Function		Wire color	Function	Wire color	Function
		Green	СНВ	Yellow	Sin+
White	Phase U	Green / Black	CHB/	Blue	Sin-
		Yellow	Z	-	-
	Black Phase V		HU	-	-
Black	Phase V	White	HW	-	-
		-	-	-	-
		Black	OV ENC	Yellow/White or Black/White	R2
Yellow - Green	<u> </u>	-	-	-	-
		-	-	-	-
Red 0,5 mm ²	Brake +	Red	+5V ENC	White/Red	R1
	Diano +	Blue	CHA/	Black	Cos-
		Blue / Black	CHA	Red	Cos+
Black 0,5 mm ²	Brake -	Yellow / Black	Z/	-	-
		Brown / Black	HU/	-	-
		Grey / Black	HV/	-	-
Red	Phase W	Grey	HV	-	-
		White / Black	HW/	-	-

NOTE: Connections with cables (no connectors) are only available with 24/48 V dc supply.

Linear-Mech. 1. Brushless Servomotors BM Series

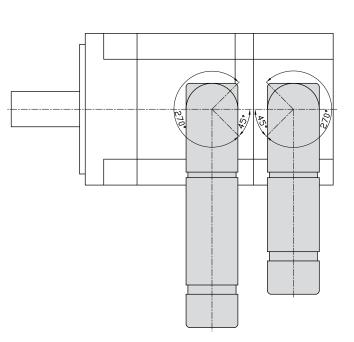
1.8 Motor connections

1.8.3 BM 82 / 102 CN - M23 Connectors


POWER M23 6-POLE		
Pin	Function	
1	Phase U	
2	Phase V	
	PE	
4	Brake +	
5	Brake -	
6	Phase W	
6	Phase W	

	SIGNA	L M23 17-POLE	
Pin	E01: Incremental encoder R01: Resolver		A01: BISS absolute encoder
1	СНВ	Sin+	DATA
2	CHB/	Sin-	DATA/
3	Z	-	A+
4	HU	-	B+
5	HW	-	DC5V / 7-30V
6	-	-	-
7	OV enc	R2	0V sensor
8	PT (optional)	PT (optional)	PT (optional)
9	PT (optional)	PT (optional)	PT (optional)
10	5 V enc	R1	5V sensor
11	CHA/	Cos-	CLOCK/
12	CHA	Cos+	CLOCK
13	Z/	-	A-
14	HU/	-	B-
15	HV/	-	-
16	HV	-	-
17	HW/	-	0V Un

Connectors orientation


Connectors may rotate to be properly oriented.

The drawing shows the angular range of orientation.

POWER

SIGNAL

LINEARMECH product range also includes a complete Series of drives, specifically engineered and developed for Linearmech brushless servomotors BM Series and linear servoactuators SA Series. Linearmech can provide you a **full package solution** with the advantage of having a sole responsible partner from the initial phase of product selection up to the start-up operations of your applications.

2.1 General features

Drives ECO Series by LINEARMECH are full digital products, optimized to control sinusoidal motors.

The implemented control (**Field Oriented Control**) allows high accuracy in motion control, together with Torque, Speed and Positioning control.

The **integrated mechatronic functions** also allows to manage even complex movements with simple digital / serial inputs.

Drives ECO Series operating modes:

TORQUE CONTROL

- analogic reference (0 ... 10) V
- access to the internal drive registers (field networks)

SPEED CONTROL

- analogic reference ± 10V
- access to the internal drive registers (field networks)

POSITIONING CONTROL

- SAP (Stand Alone Positioning)
- MSQ (Multi Sequencer)
- Electrical Axis
- Field networks

Ethercat (Coe) CANopen (DS402) RS 422/485 (SNET @ 19200 Baud) Modbus RTU (@ 19200 Baud)

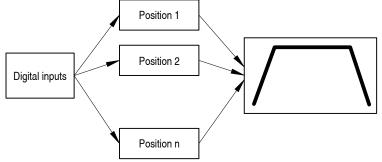
The RS 422 serial port is available as standard. It enables the connection of all drives to a PC through a **serial line**.

The **"DRIVEWATCHER" application software** allows you to manage settings and debug functions. The software allows you to analyze all the data both coming from the drive unit and from the complete dynamic system, load and actuators parameters included.

Using the program utility, it is possible to save and control (graphics and diagrams allow you to have an immediate visual response) all the relevant measurements during the operations, such as speed, power, voltage. This to get the real evaluation of the required torque and finally to reach the better optimization of the system as a whole.

Following sections refer to the general information of each single operating mode; for more information, please refer to the specific manuals.

2.2 SAP (Stand Alone Positioning)


The SAP integrated mechatronic function allows to obtain a completely independent positioning, without any PLCs or PCs.

Through the selection of digital inputs, it is possible to recall TARGET positions, previously set inside the drive with DRIVE WATCHER software tool.

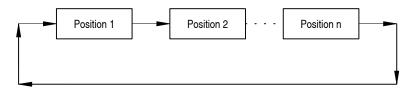
The system allows the following movements:

- · ZERO SETTING, positioning adjustment related to the input of a sensor
- Movement with an ABSOLUTE positioning related to a reference position
- Movement with a RELATIVE positioning related to the current position

SAP operating mode

		- 3	2	× * .		1						_
Posters			-	-				Constan properties	-			_
Position 1	30	abaolube	- 2	-		e administra	2	Velocity 1 0			Acceletation 100	
Position 2	9	apoolute	1.5	-Tanina Tr. (_	#out-to	1	Velocity 2 0			Deceleration 100	-
Pointen 3	0	abookate	1.1	Common 10	_	April 101	21			Lines	Alam Ja	
Facilitian II	0	abook/le	1.1	Figure 14		doid,0y	20	Special position pro	pater:			
Pointion 5	n	abiişkute	1.2	Parent D 9		W-skith.	100		Pueton 35	Position 2	Pustion 28	Paulion 29
Position F	0	absokite	- 6	1 P		gatiket.	20	position a	0	jù.	15	10
Position 7	0	endorate	1.1	Prover /U		ALTER OF	2	dre-cooley	0	1	2	0
Pholion ®	D	abacadas	1.2	Finites.27		abuoit.re	- 2	acceleration a->b	1d	0	12	0
Postern 3	ů.	dbirth,the	1.2	A Bellewick 1		aboii 0	1	deceleration and	0	19	0	0
Preition 10	0	abookie	1.0	Famoret 1		shiikis	2	rose intras add	0	0	0	0
17	0	ubirol/re		Provid D	_	poisto	2	position b	a	0	0	10
Provide La	11	Minister	- 2	Porte I		ALC: NO.	-	webscopy and the	0.	0	10	U
1	9	distin				ADVOLUTE.	2	acceleration billion	0	10	15	0
Process 14	0	Al-clife	1.2	Provide D	-	Abarphian	8	deceleration bit end	Common State of Common State o	6	10	10
F	0	distance.	1					max torque b->end		10	12	10.
Common Reg	HHE					-	Paramet	211		- If	Update Mode	
Feed Constan	ok.	60	0	Motion Phoble Type	0		d1 20	C7 1	0 0 15	0	Normal	
Jog Velocity 1 at the		Acceleration Jest	10	0	12 50	0 mil	1 to 1	0	O On the fly			
Honerg Method 0		0	Deceletation Jen.	10	0	15 39	🕡 n [20	6 22 0	0	- Aller and		
Hone Ditant Honerg Fast Speed		10	0	Torpet Window	21474836	47 🕡	出 99	10			Using mode	
		0	Following Error Window		1	- 0	d7 0	0 a 0	1 H 10	0	- Hutating Lebie	
Honeig Stove	Speed	0	0	Following Erris Term Dut	100	=ğ	48 0	🕦 is 💽	1 5 0	0	Fills moved	
Haming Acce	riodersia	100	õ	Ton Oast	0	õ	1000	15	-01.0	-õ	Estunded mod	e

SAP Control panel


2.3 MSQ (Motion Sequencer)

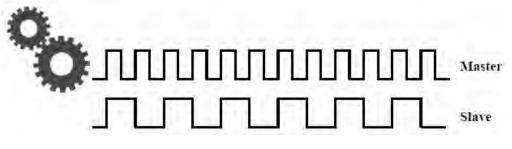
The MSQ integrated mechatronic function allows connecting a sequence of independent movements to manage even sophisticated applications, without any PLCs or PCs.

The system allows the following movements:

- ZERO SETTING, positioning adjustment related to the input of a sensor
- Movement with an ABSOLUTE positioning related to a reference position
- Movement with a RELATIVE positioning related to the current position
- Movement index
- Movement positioning after counting
- Movement positioning by external signal

MSQ operating mode

-	6	4	3 2 🔊			\$
				Registers.		
	Configure	Step 0		Feed Constant	60	
Step 0	M-Typer	0 -		Homing Method	0	
	Enable digital	input Sync Tr	edge • grale	Home Othert	0	
Step 1	Enable digte	neur NewSte	0	Homing Fast Speed	0	
Doeb (and the second second		wäter king edge	Honary Slow Speed	10	_
-	T Enable Start		to an a solution	Honing Acceleration	100	_
Step 2				/log Acceleration	100	_
100	T Enable Mityp	a Control bits		Jog Deceleration	100	-
	Target Position	10	-	Jog vehicity	3	-
Step 3	1 agen (concert	1	olulin poston	Target Window	12142483647	-1
		and a second	emerical positions referred to move start	Following Error Window Following Error Time Dut	100	-
Step 4	Velocity	10	Prolie type tapezoidal •	Pooban Window Dtl	0	-
- Steep 4	1	-		Position Window Max	0	-
-	Acceleration	10	Acceleration Jest. 0	Poston Window Inin	0	
Shep.5	Decelevation	10	Deceleration Jerk 0		2	
	Ext Postion	0		Parameters	12. 100	
Step 6		-		en 20 🕤 es 0	🕤 n 🖸	
step ti	Tative preset	0		2 50 10 10 0	2 10	
-	Charles	0	Step il counter a U 0 *	a5 33 🕦 a2 0	0 a 🕡	
Step 7		-	Step # counter = 0 0 -	d5 99 07 c7 1 d7 0 07 cs 0	- 0 H 0	


MSQ Control panel

2.4 Electrical axis

The Electrical Axis integrated mechatronic function allows relating the movement of a servomotor (SLAVE) to the action of another motor (MASTER encoder). Possibility to set a given transmission ratio trough a parameter (electric cam).

ELECTRICAL AXIS operating mode

2.5 Field Networks

Thanks to the fieldbus networks, it is possible to manage the drive by exchanging the information with a MASTER system in serial mode.

They offer great flexibility thanks to the possibility of modifying parameters, sending a speed or position setpoint or adding specific mechatronic functions.

A reduced need for wiring is possible by connecting several drives to the same serial line. Field networks differ from each other in communication speed, numbers of functions that can be managed and reference standards.

ETHERCAT

According to the new standards of industrial applications, the Ethercat fieldbus is now taking the lead.

High-speed communication bus, able to get real-time performances of drives. Specifically useful in case of application when many axes are involved with high dynamic and performance needs.

Ethercat is an industrial communication protocol with high performances, which extend the IEEE 802.3 Ethernet standard, allowing data transfer with predictable timing and an extremely precise synchronization. All datas are transferred in the standard Ethernet frame without modifying the basic structure.

For this reason the connection of the drive to an Ethercat network in made by a RJ45 connector, whose wiring respects Ethernet / IEEE 802.3 10Base-T, 100Base-TX and1000Base standards.

The Ethercat protocol applied on the Linearmech ECO Series Drives is Ethercat (CoE), this means a CANopen over EtherCAT.

CANopen

CANopen is a standard application for automation systems based on CAN (Controller Area Network) offering the following performance features:

- Transmission of critical data process according to the producer / consumer principle
- Standard description of the device (data, parameters, functions, programs) in the form of the so-called "object dictionary"
- Standard services for device monitoring, error signal (emergency messages) and network coordination ("network management")

The implemented protocol refers to the CiA CANopen - Device Profile Drives and Motion Control - DSP 402 v1.1.

RS 422/485 - MODBUS RTU

These networks are very flexible but not really fast. Mostly used for changing parameters, positioning registers and running integrated mechatronic functions.

2.6 Models and functions

	ELECTRICAL CHARACTERISTICS			MECHATRONIC FUNCTIONS			
Model	Supply voltage [V]	Rated current [A] (RMS value)	Peak current [A] (RMS value)	Analogic	SAP MSQ	Electrical axis	Field networks
MICROECO 10-20	24 48 V dc	10	20	•	•	-	• (NO Ethercat)
MINIECO 3-6		3	6				•
MINIECO PLUS 4-8	230 V ac	4	8	•	-		(NO Ethercat)
ECO 2D 4-10	000 \/	4	10		_	•	• (Ethercat optional)
ECO 2D 6-15	230 V ac	6	15	•	•		
ECO 4D 4-10		4	10			•	
ECO 4D 5-13	400 V ac	5	13	•	•		• (Ethercat optional)
ECO 4D 10-20		10	20				υριιοι αι)

NOTE: Ethercat fieldbus network only available for ECO2D and ECO4D Drives Series.

2.7 Available trasducers

	ELECTRIC	AL CHARAC	TERISTICS	SUPPORTED FEEDBACKS			
Model	Supply voltage [V]	Rated current [A] (RMS value)		Incremental encoder 5 V LD with switching sensors E01	Resolver	Absolute multiturn encoder with BISS protocol A01	
MICROECO 10-20	24 48 V dc	10	20	•	-	-	
MINIECO 3-6		3	6			-	
MINIECO PLUS 4-8	230 V ac	4	8	•	-	optional	
ECO 2D 4-10		4	10		ontional	antional	
ECO 2D 6-15	230 V ac	6	15	•	optional	optional	
ECO 4D 4-10		4	10		optional		
ECO 4D 5-13	400 V ac	5	13	•		optional	
ECO 4D 10-20		10	20				

NOTE: in case of use of a RESOLVER or an ABSOLUTE ENCODER, please contact our Technical Dpt. for assistance in Linearmech ECO Series Drive product selection and configuration.

2. Drives

2.8 Recommended Servomotors - Drives matching

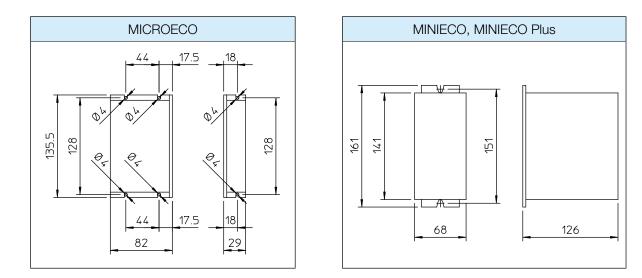
The table below shows the recommended matching between **Linearmech Servomotors BM Series** and **Drives ECO Series** with the related performances (standard motor wiring rated speed 3000 rpm).

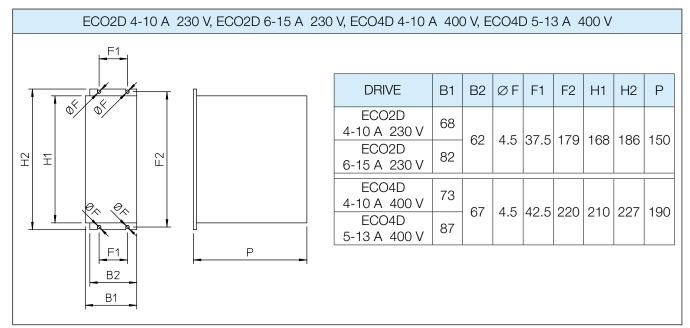
WARNING: the performance diagrams shows in Chapter 1.5 refers to the maximum motor performances. Possible degrading in performances must be considered depending on the selected drive, as specified in the table below.

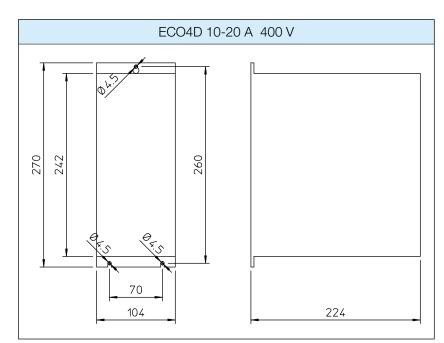
			BM 45 L	BM 63 S	BM 63 L	BM 82 S
		Т _{о, 100К} [Nm]	0.35	0.44	0.38	
	24 V dc	T _{nom, 100K} [Nm]	0.32	0.34	0.35	
MINIECO		T _p [Nm]	0.86	0.82	0.76	
10-20		T _{0, 100K} [Nm]	0.35	0.70	0.89	
	48 V dc	T _{nom, 100K} [Nm]	0.32	0.60	0.84	
		T _p [Nm]	1.05	1.65	1.67	
		Т _{о, 100К} [Nm]	0.35	0.70	1.35	1.50
MINIECO 3-6		T _{nom, 100K} [Nm]	0.32	0.60	1.30	1.30
00	000 \/ 00	T _p [Nm]	1.05	2.10	3.80	3.10
MINIECO	230 V ac	T _{0, 100K} [Nm]	0.35	0.70	1.35	1.50
PLUS		T _{nom, 100K} [Nm]	0.32	0.60	1.30	1.30
4-8		T _p [Nm]	1.05	2.10	4.20	4.10
		Т _{о, 100К} [Nm]	0.35	0.70	1.35	1.50
ECO 2D 4-10		T _{nom, 100K} [Nm]	0.32	0.60	1.30	1.30
4 10	000 \/ 00	T _p [Nm]	1.05	2.10	4.20	4.50
	230 V ac	T _{0, 100K} [Nm]				
ECO 2D 6-15		T _{nom, 100K} [Nm]				
0 10		T _p [Nm]				
		Т _{о, 100К} [Nm]				1.50
ECO 4D 4-10		T _{nom, 100K} [Nm]				1.30
1 10		T _p [Nm]				4.50
ECO 4D 5-13		Т _{о, 100К} [Nm]				
	400 V ac	T _{nom, 100K} [Nm]				
		T _p [Nm]				
		Т _{о, 100к} [Nm]				
ECO 4D 10-20		T _{nom, 100K} [Nm]				
10-20		T _p [Nm]				

2.8 Recommended Servomotors - Drives matching

The table below shows the recommended matching between **Linearmech Servomotors BM Series** and **Drives ECO Series** with the related performances (standard motor wiring rated speed 3000 rpm).


WARNING: the performance diagrams shows in Chapter 1.5 refers to the maximum motor performances. Possible degrading in performances must be considered depending on the selected drive, as specified in the table below.


BM 82 L	BM 102 S	BM 102 L6	BM 102 L8			
				[Nm] T _{0, 100K}		MINIECO 10-20
				[Nm] T _{nom, 100K}	24 V dc	
				[Nm] T _p		
				[Nm] T _{0, 100K}		
				[Nm] T _{nom, 100K}	48 V dc	
				[Nm] T _p		
1.90				[Nm] T _{0, 100K}		
1.52				[Nm] T _{nom, 100K}		MINIECO 3-6
3.65				[Nm] T _p	220 V aa	
2.50				[[NIII] I _{0, 100K}	230 V ac	MINIECO PLUS 4-8
2.16				[Nm] T _{nom, 100K}		
4.80				[Nm] T _p		
2.50	3.22			[Nm] T _{0, 100K}		ECO 2D 4-10
2.16	2.10			[Nm] T _{nom, 100K}		
6.10	6.72			[Nm] T _p	230 V ac	
2.90	4.82	4.50	4.70	[Nm] T _{0, 100K}	200 v ac	
2.50	3.70	3.90	2.50	[Nm] T _{nom, 100K}		ECO 2D 6-15
9.00	10.10	9.30	11.80	[Nm] T _p		0.0
2.90	5.20	4.80	6.20	[Nm] T _{0, 100K}		F00 (D
2.50	4.10	3.90	3.90	[Nm] T _{nom, 100K}		ECO 4D 4-10
9.00	10.70	10.00	13.80	[Nm] T _p		
	5.20	6.00	7.70	[Nm] T _{0, 100K}		F00 (D
	4.10	5.10	5.45	[Nm] T _{nom, 100K}	400 V ac	ECO 4D 5-13
	13.90	13.00	17.50	[Nm] T _p		
	5.20	7.30	9.00	[Nm] T _{0, 100K}		
	4.10	6.40	6.70	[Nm] T _{nom, 100K}	<u> </u>	ECO 4D 10-20
	15.00	20.00	24.30	[Nm] T _p		



2. Drives

2.9 Dimensions

3. Connecting cables

On request, wirings can be supplied with power and signal connectors from the servomotor to the drive. The standard cable length is 5 m.

3.1 Power supply cable

Outer jacket material:	PVC - Class 43 for UL 1581 and CSA 22.2 n°210 Colour: orange
Operating temperature:	for fixed wiring, without external mechanical stress: (- $40 \dots + 80$)°C for mobile laying cables: (- $10 \dots + 80$)°C
Minimum bending radius:	for fixed wiring: $4 \times \text{cable diameter}$ for mobile laying cables: 7.5 × cable diameter
Max. shifting speed for trailing cables:	3 m/s
Max. acceleration/deceleration:	10 m/s ²
Fatigue life for trailing cables:	(3 6) million movements
Operating voltage:	STYLE 2464: 300 V (UL) - U ₀ /U 450/750 V STYLE 2570: 1000 V (UL)
Reference standards:	CSA 22.2 n°210, UL 1581
Approvals:	Up recognized / CSA (FU° or c FU° us) AWM STYLE 2464 80°C 300 V - CSA c FU° us AWM STYLE 2570 80°C 1000 V - CSA
Fire performance:	self-extinguishing VW-1 (UL); FT1 (CSA); IEC 60332-1, CEI 20-35 (EU)
Industrial oils resistance:	ASTM n°2, IRM 902, IEC 60811-2-1

3.2 Signal cable

Outer jacket material:	PVC - Class 43 for UL 1581 and CSA 22.2 n°210 Colour: green
Operating temperature:	for fixed wiring, without external mechanical stress: (- $40 \dots + 80$)°C for mobile laying cables: (- $10 \dots + 80$)°C
Minimum bending radius:	for fixed wiring: $4 \times$ cable diameter for mobile laying cables: 7.5 \times cable diameter
Max. shifting speed for trailing cables:	3 m/s
Max. acceleration/deceleration:	10 m/s ²
Fatigue life for trailing cables:	(3 6) million movements
Operating voltage:	30 V - 300 V (UL)
Reference standards:	CSA 22.2 n°210, UL 1581
Approvals:	Wrecognized / CSA (AU° or CAU°) AWM STYLE 2464 80°C 300 V - CSA CAU® AWM STYLE 2570 80°C 1000 V - CSA
Fire performance:	self-extinguishing VW-1 (UL); FT1 (CSA); IEC 60332-1, CEI 20-35 (EU)

ASTM n°2, IRM 902, IEC 60811-2-1

Industrial oils resistance:

4. Ordering code

4.1 Servomotor ordering code

В	6M 45 L	-	30	24	E01	CV	01	L	
	1	2	3	4	5	6	7	8	
1	Servomo	otor size					page 6-9		
2							page 6-9		
		- = without brake							
		holding brake 2	24V dc						
3		-							
		0 rpm (standar	d)						
	40 = 400								
	50 = 500								
	60 = 600								
4	Drive su	oply voltage					page 35		
	24 = 24 \	/ dc							
	48 = 48 \	/ dc							
	230 = 23	0 V ac - 1-pha	se						
	400 = 40	0 V ac - 3-pha	se						
5	Motor fe	edback					page 26		
	E01: opti	cal encoder, Lll	NE-DRIVER, 2	000 ppr (stanc	lard)				
	R01: reso	olver, 1 pole pai	irs 7 V rms, 10	kHz (optional)	1				
	A01: BIS	S absolute mul	titurn encoder	(option availab	ble starting from	n size BM 63)			
	- = witho	ut device							
6	Electrica	l connections					page 28-30		
	CV = pov	ver and signal o	cable, 0.5 m lo	ng, no connec	ctors				
	$CN = double 90^{\circ} connector$								
7	Thermal protection page 27								
	$01 = PTC (^{3})$								
	02 = PTO								
	03 = KTY 84-130 (³)								
8	Output s	shaft version					page 10-25		
	C = cyline	drical shaft							
	L = shaft with key								

- (1) available only for BM 45 and BM 63 sizes Contact our Technical Dpt. for more information
- (2) available only for BM 45 size Contact our Technical Dpt. for more information
- (3) not supported by ECO series drives supplied by Linearmech

4. Ordering code

4.2 Drive ordering code

ECO 2D 4-10	230 V	SAP + MSQ	E01	-
1	2	3	4	5

1 Drive model	page 35
2 Supply voltage	page 35
3 Positioner	page 35
4 Motor feedback	page 35
5 Ethercat communication bus	page 35

Linearmech ECO Series Drives complete options and coding:

Model	Supply voltage	Positioner	Feedback	Ethercat
MICROECO 10-20	24 48 V dc	SAP + MSQ	E01	-
MINIECO 3-6	230 V ac	SAP + MSQ	E01	-
MINIECO PLUS	230 V ac	-	E01	-
4-8	200 • 40		A01	-
			E01	- Ethercat
ECO 2D 4-10	230 V ac	SAP + MSQ	R01	- Ethercat
			A01	- Ethercat
	230 V ac	SAP + MSQ	E01	- Ethercat
ECO 2D 6-15			R01	- Ethercat
			A01	- Ethercat
		SAP + MSQ	E01	- Ethercat
ECO 4D 4-10	400 V ac		R01	- Ethercat
			A01	- Ethercat
			E01	- Ethercat
ECO 4D 5-13	400 V ac	SAP + MSQ	R01	- Ethercat
			A01	- Ethercat
			E01	- Ethercat
ECO 4D 10-20	400 V ac	SAP + MSQ	R01	- Ethercat
			A01	-
			//01	Ethercat

Linear-Mech.

4. Ordering code

4.3 Connecting cables ordering code

4.3.1 Signal cables

	CS	R01	M17	05	1		
	1 2 3 4 5						
1	1 Cable type page 39						
	CS = signal cable						
	CP = power supply c	able					
2	Trasducer			page 2	26		
	E01: optical encoder,	LINE-DRIVER, 2000 p	pr				
	R01: resolver, 1 polar	pair, 7 V rms, 10 kHz					
	A01: BISS absolute n	nultiturn encoder					
3	Motor side connect	tors		page 2	28-30		
	M17 = M17 17-pole o	connector					
	M23 = M23 17-pole o	connector					
4	Length						
	05 = 5 meters						
	10 = 10 meters						
	15 = 15 meters						
5	Drive side connecto	ors					
	1 = 26-pole HD type connector (for MINIECO-ECO2D-ECO4D drives)						
	2 = No connectors (for MICROECO drives)						

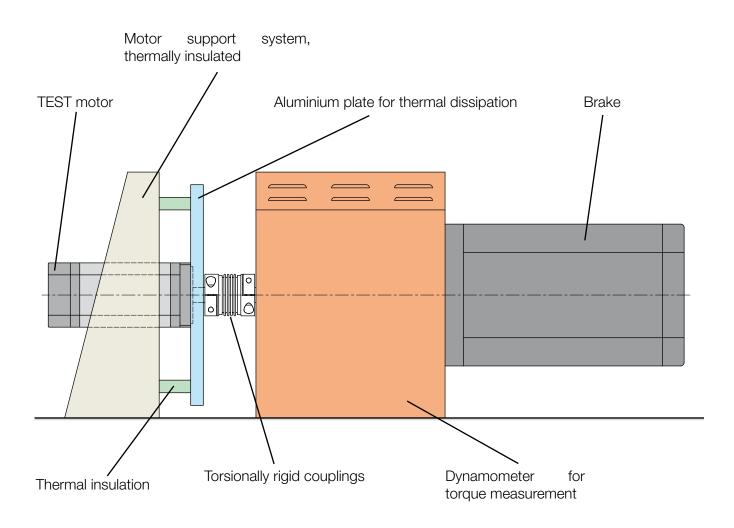
4.3.2 Power supply cables

	СР	M17	10				
	1	2	3				
1	Cable type			page 39			
	CS = signal cable						
	CP = power supply c	able					
2	Motor side connect	ors		page 28-30			
	M17 = M17 7-pole co	onnector					
	M23 = M23 6-pole co	onnector					
3	Length						
	05 = 5 meters						
	10 = 10 meters						
	15 = 15 meters						

A. Terms and Definitions

Term	Symbol	Unit of measure	Definition	
MOTOR	I		1	
Continuous rated torque	T _{nom, 100K}	Nm	Torque supplied by the motor for an unlimited period of time, at nominal speed (in thermal balance condition), without exceeding the thermal limits of the relevant insulation class. This condition is defined during test run at conditions described in appendix B.	
Stall torque	Т _{о, 100к}	Nm	Torque supplied by the motor for an unlimited period of time, with blocked rotor (in thermal balance condition), without exceeding the thermal limits of the relevant insulation class. This condition is defined during test run at a rotation speed closed to 0 rpm, at conditions described in appendix B.	
Peak torque	Τ _p	Nm	Torque generated at max. current (peak). The max. torque is possible for short periods of time to have a dynamic system behaviour (abrupt variations of the operating condition). Exceeding this value causes the irreversible demagnetization of the rotor magnetic group.	
Rated speed	n _{nom}	rpm	Speed performed by the motor for an unlimited period of time, without exceeding the thermal limits of the relevant insulation class, with torque as defined in the TORQUE - SPEED curve shown in the motor specific diagram.	
Max. speed	n _{max}	rpm	Max. permissible rotating speed. It depends on centrifugal force of rotating masses, rotor balance grade and bearings.	
Stall current	I _{о, 100К}	А	Current (RMS value) phase - phase supplied to the motor in order to generate the torque in conditions of blocked rotor (stall).	
Peak current	۱ _р	А	Current (RMS value) phase - phase supplied to the motor in order to generate the max. torque (peak). This current is limited by the motor magnetic circuit: exceeding this value even for a short time causes the irreversible demagnetization of the magnets.	
Voltage constant	k _e	V/1000 rpm	Voltage (RMS value) phase - phase produced by operating motor at 1 000 rpm, at 20°C ambient temperature, with average windings temperature increment of 20 K.	
Torque constant	k _T	Nm/A	Ratio between torque with blocked rotor and current with blocked rotor $(T_{0,100K}/I_{0,100K})$, with windings temperature increment of 100 K (insulation class F).	
Thermal time constant	t _{th}	min	Time necessary to heat the cold motor up to a temperature increase of 0.63 \times 100 K, with load I_{0.100K}	
Winding resistance	R _{ph}	Ω	Electric resistance of phase - phase windings connected in Y circuit, at 20°C ambient temperature.	
Winding inductance	L _D	mH	Inductance of phase - phase windings connected in Y circuit.	
Electric time constant	t	ms	Ratio between winding inductance and winding resistance (L_p / R_{ph}).	
Moment of inertia (without brake)	J _{motore}	kg × m²	Moment of inertia of motor rotating elements.	
Moment of inertia (with brake)	J _{motore BR}	kg × m²	Moment of inertia of motor and brake rotating elements.	
Permissible radial load on motor shaft	F _R	Ν	Constant load radially applied on the centre of the motor shaft, at 3 000 rpm for nominal bearing service life of 10 000 h.	
Permissible axial load on motor shaft	F _N	Ν	Constant load axially applied on the motor shaft, at 3 000 rpm for nominal bearing service life of 10 000 h.	
BRAKE				
Supply voltage	U _{BR}	V	Voltage supplied to the brake excitation coil to release the brake.	
Brake power	P _{BB}	W	Power consumption of the brake excitation coil.	
Rated braking torque	T _{BR}	Nm	Holding braking torque (it cannot be used to stop the motor).	
Brake disengagement delay time	t _{-BR}	ms	Reacting time from the moment the rated power supply voltage is applied until the brake is completely disengaged.	
Brake engagement delay time	t _{BR}	ms	Reacting time from the moment the brake power supply is interrupted until the rated braking torque $T_{_{\rm BR}}$ is reached.	

Appendix


B. Test conditions

All electrical and mechanical performances of **Linearmech BM Series servomotors** are obtained during test run, where the servomotor has been fixed horizontally, supported by an aluminiun plate thermally insulated from the base of the test bench, and coupled by dynamometer to the brake.

The dimensions of aluminium plates used is related to the servomotor size:

- BM 45, BM 63, BM 82: 250×250×6 mm
- BM 102: 350×350×20 mm

During thermal test for the definition of stall torque ($T_{0, 100K}$) and continuous rated torque ($T_{nom, 100K}$) the motor, in thermal balance conditions, run to a windings temperature increment of 100 K, without exceeding temperature limits related to the F insulation class.

 Notes	
Noted	

 Notes

Servomech and Linearmech products

with Linearmech Brushless Servomotors BM Series

Linear Servoactuators

Ball screw linear drive 7 sizes available Attachments according to ISO 15552 Linear speed up to 1500 mm/s Load capacity from 0.5 kN to 40 kN

SA IL Series In Line Design

SA PD Series Parallel Design

Ball screw jacks MA BS Series

Worm gearbox Load capacity from 5 kN to 350 kN 8 sizes available Ball screw diameter from 16 mm to 100 mm Linear speed up to 285 mm/s

Travelling nut

Travelling screw

Ball screw jacks HS Series

Gleason bevel gear Load capacity from 10 kN to 200 kN 6 sizes available Bull screw diameter from 25 mm to 80 mm Linear speed up to 2000 mm/s

Servomech and Linearmech products

with Linearmech Brushless Servomotors BM Series

Linear Actuators

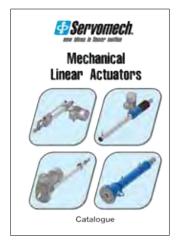
Serie UAL

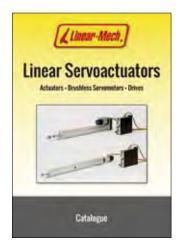
Acme screw linear drive 5 sizes available Load capacity from 2 kN to 15 kN Linear speed up to 500 mm/s

UBA Series

Ball screw linear drive 5 sizes available Load capacity from 2 kN to 15 kN Linear speed up to 500 mm/s

ATL Series


Acme screw linear drive 7 sizes available Load capacity from 4 kN to 80 kN Linear speed up to 150 mm/s

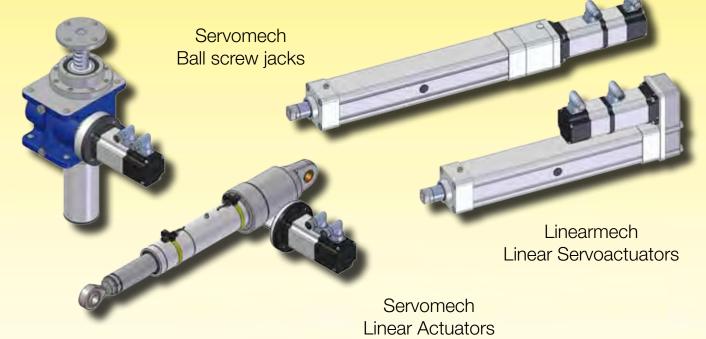

BSA Series

Ball screw linear drive 7 sizes available Load capacity from 4 kN to 60 kN Linear speed up to 120 mm/s

For further information check out our catalogues:

In this catalogue:

Brushless Servomotors BM Series


High efficiency and performances Segmented lamination stator technology 7 sizes available Nominal torque up to 10 Nm Available with brake Standard optical encoder, optional resolver or multi-turn absolute encoder

Drives Eco Series

Engineered focusing on linear performances for Automation Industry and Linear Motion Positioning Control (SAP - Stand Alone Positioning, MSQ - Motion Sequencing, Electrical axis), Torque control, Speed control Ethercat, CANopen, RS422/485, MODBUS RTU

Servomech and Linearmech products

with Linearmech Brushless Servomotors BM Series

www.linearmech.it

Linearmech S.r.l.

Via Caduti di Sabbiuno, 3 - 40011 Anzola dell'Emilia (Bologna) - ITALY Tel. +39.051.6504311 - Fax +39.051.6504313 - info@linearmech.it